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概要
トーリックトポロジーは, 1991 年の Davis と Januszkiewicz による研究を契機として発展し
てきた. 彼らによって導入された擬トーリック多様体は, 特性対と呼ばれる組合せ論的対象によっ
て, 同変同相型が分類されることが知られている. 本講演では, 擬トーリック多様体を一般化する
概念として, 凸多面体上の locally standard T -pseudomanifold を導入し, (弱)同変同相による
分類定理を与える. これは, 擬トーリック多様体に対する Davisと Januszkiewiczの分類を拡張
するものである. 本講演は黒木慎太郎氏との共同研究に基づく.

1 はじめに
トーリックトポロジーでは, トーラス作用を用いて空間を調べ, そのトポロジカルな性質と組合せ

論との関係を明らかにする研究が盛んに行われてきた. この枠組みにより, トポロジーの問題や結果
を組合せ論的な観点から理解することができ, またその逆の視点も有効である. 従来のトーリックト
ポロジーにおいては, 滑らかなトーラス作用を持つ多様体や, 比較的扱いやすい特異点を持つ軌道体
(orbifold) を対象とすることが主であった (本稿における特異点とは, Euclid空間と同相な近傍を持
たない点, すなわち位相多様体としての構造が崩れる点を指す). そのため, 軌道空間として現れる凸
多面体は, 単純凸多面体という特別なクラスに限られていた.

これに対し, 講演者らは [KK26] において, より一般の特異点を許容する locally standard T -

pseudomanifoldを導入し, その同変同相型の分類について調べた. このクラスの特徴は, 従来のトー
リックトポロジーでは現れなかった一般の凸多面体が, 軌道空間として現れる点にある. 本稿では簡
単のため, 軌道空間が凸多面体となる場合に焦点を当てて紹介する. なお, 従来のトーリックトポロ
ジーではトーラスの滑らかな作用を議論することが主であったが, 本研究では連続作用を扱う. 具体
的には, 連続なトーラス作用を持つ, 第二可算公理を満たすコンパクト Hausdorff空間を対象とする.

2 擬トーリック多様体
この章では, Davisと Januszkiewiczが [DJ91]で導入した擬トーリック多様体の定義と, 特性対と

の対応を述べる.
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2.1 擬トーリック多様体の定義
以下, Tn ∼= U(1)n を n 次元トーラスとする. ここで, U(1) ⊂ C は単位円周である. 文脈か

ら次元が明らかな場合は, Tn を単に T と表記する. U(1)n は次のようにして, Cn に作用する:

(t1, . . . tn) ∈ U(1)n, (z1, . . . zn) ∈ Cn に対して,

(t1, . . . tn) · (z1, . . . zn) := (t1zn, . . . tnzn).

すなわち, 各成分ごとの積による作用である. この作用を標準作用 (standard action) と呼ぶ. 以下,

Cn およびその U(1)n 不変部分集合については, 常にこの作用を考えるものとする. 次に, 局所標準作
用 (locally standard action)を定義する.

定義 2.1 (局所標準作用). M は 2n次元の可微分多様体であり, 滑らかな Tn 作用を持つものとする.

M 上の T 作用が局所標準的 (locally standard)であるとは, 各 x ∈M に対し, xの T 不変な開近傍
U ⊂M であって, ある U(1)n 不変な開集合 V ⊂ Cn に弱同変同相であるものが取れるときをいう.

M 上の T 作用が局所標準的であるとき, 軌道空間M/T は n次元の角付き多様体の構造をもつこ
とが知られている.

次に, 単純凸多面体と呼ばれる特別な凸多面体を定義する. 凸多面体については, [Zie96]等を参照
されたい.

定義 2.2 (単純凸多面体). n次元凸多面体が単純 (simple polytope)であるとは, 各頂点がちょうど
n個のファセット (余次元 1の面)に含まれるときをいう.

単純凸多面体は角付き多様体とみなせることに注意されたい. 以上の準備の下, 擬トーリック多様
体は次のように定義される.

定義 2.3 (擬トーリック多様体). T の M 上への作用が局所標準的であり, 軌道空間 M/T が角付
き多様体として単純凸多面体 P と同相であるとき, M を P 上の擬トーリック多様体 (quasitoric

manifold)という.

2.2 特性対による分類
本節では, 擬トーリック多様体が特性対と呼ばれる組合せ論的対象と対応することを, 厳密な証明
を省き簡潔に述べる. 本節の内容は [DJ91]に基づいている.

P を n次元単純凸多面体, M を 2n次元擬トーリック多様体とし, π : M → P を軌道射影とする.

P のファセットの集合を {F1, . . . , Fm}で表す. 各ファセット Fi の逆像

Mi := π−1(Fi)

は T/TFi
∼= Tn−1 作用をもつ Fi 上の 2(n− 1)次元擬トーリック多様体になる. ここで, TFi

⊂ T は
Mi を固定する円周部分群 (ランク 1 の部分トーラス) である. 円周部分群 TFi

は原始的なベクトル



µi ∈ Zn により決定され, µi は符号を除いて一意である. このようにして, 各ファセット Fi に対して
µi の符号を指定することで, 関数

µ : {F1, . . . , Fm} → Zn

∈ ∈

Fi 7→ µi

が定まる. これを擬トーリック多様体M の特性関数と呼ぶ. 事実として, M の特性関数は次の性質
を満たす.

条件 2.4. Fi1 ∩ · · · ∩ Fik 6= ∅のとき, µ(Fi1), . . . , µ(Fik)は Zn の基底の一部をなす.

この性質をもとに, M の特性関数を組合せ論的に定義し直したものが単純凸多面体 P 上の特性関
数である.

定義 2.5 (単純凸多面体上の特性関数). n次元単純凸多面体 P のファセットの集合を {F1, . . . , Fm}
とする. 関数 µ : {F1, . . . , Fm} → Zn が条件 2.4を満たすとき, µを P 上の特性関数と呼び, (P, µ)

を特性対と呼ぶ.

特性対 (P, µ)が与えられたとき, 標準モデルと呼ばれる T 作用を持つ空間を構成できる.

定義 2.6 (標準モデル). 標準モデルM(P, µ)を, 次の商位相空間として定義する:

M(P, µ) := P × Tn/∼.

ここで, 同値関係 ∼は次のように定める. P × Tn の 2点 (p, t), (q, s)が同値であるとは, p = q であ
り, かつ pを相対内部に含む面 F に対して, t−1s ∈ TF が成り立つときをいう. ここで, TF ⊂ Tn は,

F = Fi1 ∩ · · · ∩ Fik と表されるとき, µ(Fi1), . . . , µ(Fik)で張られる部分トーラスである. なお, pが
P の内部にある場合 (すなわち, F = P のとき)は, TP = {1}とする. M(P, µ)上の Tn 作用は, Tn

への掛け算から誘導されるものと定める.

注意 2.7. 面をファセットの共通部分として表した F = Fi1 ∩ · · · ∩Fik という表示は, P が単純であ
ることから一意である.

最後に, 擬トーリック多様体と特性対の対応について述べる.

定理 2.8. P を単純凸多面体とする.

• µを P 上の特性関数とするとき, 標準モデルM(P, µ)は P 上の擬トーリック多様体である.

• M を P 上の擬トーリック多様体とし, µをM の特性関数とする. このとき, M と標準モデル
M(P, µ)は同変同相である.

注意 2.9. [PS10]では, 擬トーリック多様体を拡張した擬トーリック軌道体 (quasitoric orbifold)と
呼ばれるクラスが研究されている. このクラスにおいても, 軌道空間は単純凸多面体であり, 特性対が
定義され同様の対応が成り立つ. その際の特性関数の条件は, 条件 2.4における「Zn の基底の一部」
という部分を「Z上一次独立」に変更したものである.



3 凸多面体上の locally standard T -pseudomanifold

この章では, 講演者らが [KK26]で導入した locally standard T -pseudomanifold のうち, 軌
道空間が凸多面体である場合について述べる. この章の目的は, 凸多面体上の locally standard

T -pseudomanifoldの同変同相型が, 軌道空間である凸多面体と, 特性関数を拡張した特性関手の組に
よって分類できることを述べることである.

以下で述べる open cone ([Max19])は locally standard T -pseudomanifold定義に用いられる.

定義 3.1 (open cone). Lをコンパクト Hausdorff空間とする. Lの open coneを次のように定義
する:

c̊(L) := L× [0, 1)/(L× {0}).

すなわち, c̊(L)は L × [0, 1)の部分空間 L × {0}を 1点に潰すことによって得られる商空間である.

また, c̊(∅)は 1点であるとする.

3.1 Locally standard T -pseudomanifoldの定義
X を第二可算公理を満たすコンパクト Hausdorff空間とし, Tm が連続に作用しているとする. こ

のとき, n ≥ 0, m ≥ nに対して, 次の X の部分集合を定義する: 0 ≤ i ≤ nに対して,

X2i+1+(m−n) = X2i+(m−n) := {x ∈ X | dimT (x) ≤ i+ (m− n)}.

ここで, T (x)は x ∈ X を通る T 軌道を表す. また, i = −1のときは空集合, すなわち,

X(m−n)−1 = X(m−n)−2 := {x ∈ X | dimT (x) ≤ (m− n)− 1} = ∅

であると約束する. T 作用は X 上に次のような部分集合の列を誘導する:

X : X = Xm+n ⊃ X2(n−1)+(m−n) ⊃ · · · ⊃ X2i+(m−n) ⊃ · · · ⊃ Xm−n ⊃ ∅.

この部分集合の列 Xを軌道の次元によるフィルトレーションと呼ぶ.

条件 3.2. 次の 3条件を仮定する:

• 各 x ∈ X のアイソトロピー部分群 Tx は部分トーラス (すなわち, T の連結な閉部分群);

• 0 ≤ i ≤ nに対して, 各X2i+(m−n) \X2(i−1)+(m−n) の連結成分は (2i+ (m− n))次元の位相
多様体;

• n > 0のとき, Xm+n ⊋ Xm+n−2 (X は自由軌道を持ち, 作用は効果的).

各 0 ≤ i ≤ nに対して, X2i+(m−n) は T 不変であるから, 軌道射影 π : X → Q := X/T は軌道空
間 Qに次のフィルトレーション X/T = Qを誘導する:

X/T = Q : Q = Qn ⊃ Qn−1 ⊃ · · · ⊃ Qi ⊃ · · · ⊃ Q0 ⊃ ∅.

ただし, Qi := X2i+1+(m−n)/T = X2i+(m−n)/T である. このフィルトレーションを備えた軌道空間
を (Q,Q)で表す. 本稿では簡単のため, (Q,Q)は次の条件を満たすものを考える.



条件 3.3. ある n 次元凸多面体 P と, (Q,Q) から (P,P) へのフィルトレーションを保つ同相写像
f : Q→ P が存在する. ここで Pは次で定義されるフィルトレーションである:

P : P ⊃
∪

Fn−1はファセット
Fn−1 ⊃ · · · ⊃

∪
F iは i 次元面

F i ⊃ · · · ⊃
∪

v は頂点
{v} ⊃ ∅.

また, 同相写像 f がフィルトレーションを保つとは, すべての 0 ≤ i ≤ nに対して,

f(Qi) =
∪

F iは i 次元面
F i

が成り立つことをいう.

次に, 本研究の主対象である凸多面体上の locally standard T -pseudomanifoldを定義する.

定義 3.4. (m+ n)次元 locally standard T -pseudomanifold (X,X)とは, nに関する帰納法に
より次を満たすものとして定義される.

• n = 0 のとき, X は m 次元トーラスの非交和であり, 各成分は乗法による T 作用を持つ (X

のコンパクト性により, これは有限個の T の非交和となる);

• n > 0のとき, 0 ≤ i ≤ nに対して, 任意の x ∈ X2i+(m−n) \X2(i−1)+(m−n) に対し, 次で構成
される 3つ組 (Ux, Lx, φx)が存在する:

1. Ux ⊂ X は T 不変な xの開近傍;

2. Lx は x のアイソトロピー部分群 Tx ∼= Tn−i が作用する (2n − 2i − 1) 次元 locally

standard Tx-pseudomanifold. Lx を xのリンクと呼ぶ (Lx は空でもよい);

3. φx : Ux →
(
Ω×U(1)m−n

)
× c̊(Lx) は弱同変同相写像である. ここで, Ω ⊂ (C \ {0})i は

U(1)i 不変な開部分集合である. トーラス Tm は (
Ω× U(1)m−n

)
× c̊(Lx) 上に次の同型

を通して作用するものとする:

Tm ∼= Tm/Tx × Tx ∼= U(1)i+(m−n) × Tn−i.

ただし, U(1)i+(m−n) の Ω× U(1)m−n 上の作用は標準的であり,

c̊(Lx) = Lx × [0, 1)/Lx × {0}

上の Tx 作用は, 2で述べた Lx 上の Tx 作用から誘導されるもので, [0, 1)成分上での作用
は自明である.

locally standard T -pseudomanifold は適当なトーラス作用を備えた topological stratified pseu-

domanifoldである. topological stratified pseudomanifold は特異点を許容する空間であり, その詳
細については [Fri20]を参照されたい. 次の命題は, 空間が locally standard T -pseudomanifoldとい
う性質は, 弱同変同相で不変であることを示している.

命題 3.5. X および X ′ を連続な T 作用を持つ第二可算なコンパクト Hausdorff 空間とする. ま
た, X および X′ を軌道の次元によるフィルトレーションをとする. (X,X) が locally standard

T -pseudomanifold であると仮定する. このとき, X と X ′ が弱同変同相であれば, (X ′,X′) もまた
locally standard T -pseudomanifoldである.



3.2 特性関手
次に, locally standard T -pseudomanfiold の分類を行うため, 凸多面体上の特性関手について

述べる. 以下では, X および X ′ を, n 次元凸多面体上の (m + n) 次元 locally standard Tm-

pseudomanifoldとする. 定義の準備として, 次の命題を用意する.

命題 3.6. π : X → P を軌道射影とする. 面 F ⊂ P に対して, F̊ で F の相対内部を表す. このとき,

次の 3つが成り立つ.

• 面 F ⊂ P に対して, π−1(F̊ )のすべての点のアイソトロピー部分群 (部分トーラス)は一致す
る. 特に, π は各面に部分トーラスを割り当てる対応 λ : F 7→ TF を定める.

• F の余次元が iのとき, TF ⊂ T は i次元の部分トーラスである.

• (反変関手性). 面 F,Gに対し, F ⊂ Gならば, TF ⊃ TG が成り立つ.

この命題をもとに, 凸多面体上の特性関手を次で定義する.

定義 3.7 (凸多面体上の特性関手). P を凸多面体とする. F(P )を P の面がなす順序集合とし, 圏と
みなす. すなわち, 射 F → Gは面の包含 F ⊂ Gにより定める. F(P )op をその反転圏とし, T を T

の部分トーラスがなす圏 (射は包含写像)とする. 凸多面体 P 上の特性関手を, 関手

λ : F(P )op → T

であって, 次の条件を満たすものと定義する:

余次元 iの面 F ∈ F(P )に対して, λ(F ) ⊂ T は i次元の部分トーラスである.

また, 組 (P, λ)を特性対と呼ぶ. 特に, 特性対 (P, λ)が命題 3.6により軌道射影 π : X → P から定
まるとき, X の特性対と呼ぶ.

続いて, 特性対の間の弱同型写像を定義する.

定義 3.8. P と P ′ を凸多面体とする. 写像 f : P → P ′ は同相写像で, 同型関手 (順序同型写像)

F(f) : F(P )op → F(P ′)op を誘導するとする. f が特性対 (P, λ)と (P ′, λ′)の間の弱同型写像であ
るとは, 自己同型 ψ : Tm → Tm が存在して, 次の図式が可換となることをいう (すなわち, 各面 F に
対して, Ψ ◦ λ(F ) = λ′ ◦ F(f)(F )が成り立つ).

F(P )op F(P ′)op

T T

F(f)

∼=

λ λ′

Ψ
∼=

ここで, Ψは TF ∈ T に対して, Ψ(TF ) = ψ(TF )で定義される同型関手である. (P, λ)と (P ′, λ′)の
間に弱同型写像が存在するとき, (P, λ)は (P ′, λ′)と弱同型であるという. さらに, ψ が恒等写像であ
る場合には, 弱同型写像を同型写像と呼び, 弱同型を同型と呼ぶ.



次の命題は, 特性対が ((弱)同型の差を除いて)一意的であることを示す.

命題 3.9. X と X ′ が (弱) T 同変同相であれば, それぞれの特性対 (P, λ)と (P ′, λ′)は (弱)同型.

3.3 Locally standard T -pseudomanifoldの標準モデル
P を n次元凸多面体とし, λを P 上の特性関手とする. 特性対 (P, λ)から構成される標準モデル
について述べる.

定義 3.10 (標準モデル). 標準モデル X(P, λ)を, 次の商位相空間として定義する:

X(P, λ) := P × Tm/∼.

ここで, 同値関係 ∼は次のように定める. P × T の 2点 (p, t), (q, s)が同値であるとは, p = q であ
り, かつ pを相対内部に含む面 F に対して, t−1s ∈ λ(F )が成り立つときをいう.

標準モデルについて, 次の定理が成り立つ.

定理 3.11. 標準モデル X(P, λ)は locally standard T -pseudomanifoldの構造を持つ.

この定理から, 次の結果が従う.

定理 3.12. locally standard T -pseudomanifoldのクラスは擬トーリック多様体 (擬トーリック軌道
体)および projective toric variety ([CLS11], [Jor98]を参照)のクラスを含む.

Proof. 擬トーリック多様体 (擬トーリック軌道体)の同変同相型は, 単純凸多面体上の標準モデルと
同変同相である. また, projective toric variety についても, [CLS11]および [Jor98]により, 凸多面
体上の標準モデルと同変同相である (MacPhersonの定理). したがって, 命題 3.5と定理 3.11より,

主張が従う.

注意 3.13. 軌道空間が凸多面体であることを仮定しない場合については, [KK26]においてより一般
的な結果が示されている. すなわち, locally standard T -pseudomanifoldのクラスは complete toric

variety ([CLS11]を参照)およびコンパクトな locally standard T -manifold ([BP12]を参照)のクラ
スを含む ([KK26, Theorem 14.1]).

3.4 主結果
主結果である分類定理を述べる. この定理は, 凸多面体上の locally standard T -pseudomanifold

の同変同相型が特性対によって分類されることを主張するものである. 本定理は, [DJ91] およ
び [PS10] の分類結果を拡張したものであり, 特異点を許容する空間である topological stratified

pseudomanifoldにも適用可能である.

定理 3.14 (分類定理). X と X ′ を, それぞれ凸多面体上の locally standard T -pseudomanifold と
する. このとき, 次の 2つの条件は同値である:



1. X の特性対 (Q,λ)と X ′ の特性対 (Q′, λ′)は (弱)同型;

2. X と X ′ は (弱) T 同変同相.

証明の概要. (Q,λ)と (Q′, λ′)が (弱)同型であるとする. このとき, それぞれの標準モデルが (弱) T

同変同相であることが示される ([KK26, Theorem 9.1]を参照):

X(Q,λ) ∼= X(Q′, λ′). (1)

さらに, [Ayz18]のアイデアを用いてモデル空間 Y (Q,λ)を導入すると, T 同変同相

X(Q,λ) ∼= Y (Q,λ) ∼= X, X(Q′, λ′) ∼= Y (Q′, λ′) ∼= X ′ (2)

が示される. (1) と (2)を組合わせることで, X と X ′ が (弱) T 同変同相であることが従う.

逆は命題 3.9から従う.
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